
AA

David Zimbeck
www.bitbay.market 1. 27.2018

SCALING THE
BLOCKCHAIN

Sharing stakes | Atomic double deposit
escrow | Anonymous Atomic Trading |
Notary and Asset Issuance | Smart
contracts in the output | Sidechains |
Pruning | Variable Block Size | Voting
for network changes | Malleability Fix
| Spam protection | Stake Grinding
defense | Anonymous Transactions
using Bitmessage

AND OTHER
IMPROVEMENTS

11

Introduction___
Blockchains get a lot of their security from strong signatures and hashes, consensus, and

decentralization. One of the longest technical debates in history took place in the Bitcoin network

about something as trivial as increasing the size of the blocks. This type of technical gridlock prevents

popular blockchains from experimenting with improvements at the speed of the internet. This is

why the altcoin industry is so important because of the great ideas being proposed and tested.

Over the years of coding and watching the industry grow I have developed some concepts that I

think should be used to improve blockchains specifically “Proof of Stake” chains which are energy

efficient and more resistant to forks in practice. The key to scaling a chain to industrial sizes while

maintaining decentralization is to face the reality of the situation. We want people to verify as much

as possible, while getting as much volume as possible while having a network large enough that it

is not prone to centralization. An individual can not validate every transaction and once the network

scales a node can not validate every transaction. Although it can be argued that if the demand was

there then the reward a node gets paid from fees will be enough to cover expensive computers and

servers, it is unclear if this is the case. Besides, users still need a way to synchronize the chain with

standard hardware. So this paper will explain simple improvements to blockchains that can work

wonders if implemented. Some of the ideas are easy to implement while others require a good deal

of engineering. If a chain were to implement all of these ideas it would be a very decentralized secure

and feature rich blockchain that could scale to meet the demand.

22

The first concern is how large a block can be. I believe that the concerns about large blocks
are overblown. However, the block size should be dynamic to grow or shrink based on
demand. The concept is simple. The blockchain sets a very generous maximum block size
(for example 128 megabytes) and a minimum block size (a few megabytes). Then within
this range the block size is increased when the blocks consecutively fill to more than a
percentage in capacity. So in the beginning if the block size is set for 4mb and it goes
beyond 75% capacity for a thousand blocks, then the network automatically increases it
to 8mb. If the network becomes less popular and traffic drops, then if the blocks are only
being filled at 10% capacity, the block size is decreased back to 4mb. These numbers are
not set in stone however the concept is simple. Part of the reason some people protest
larger blocks has to do with centralization so this improvement will be complemented by
the other sections in this paper.

Variable
block size

33

Pruning the
blockchain

One of the reasons it’s been stated that pruning the chain is not secure, is that nodes
connecting to the network should be able to work from the genesis block to the current
block. It is possible with “Moore’s law” that computers will have this capacity and bandwidth.
Currently, this is not the case because chains such as Ethereum are growing at a gigabyte
per day and this makes it impossible for consumers to run their chain which compromises
their security. Therefore, it’s very pragmatic to prune the blockchain. Pruning has always
been voluntary and there has never really been a way for a node to connect to the network
and get a pruned version of the blockchain from a certain point. Therefore the technique
is fairly simple. From each pruning point, nodes start to build a database of new unspent
transactions(assuming the previous database included all unspent transactions). Some
spent transactions are kept because the requirement should be that a spent transaction
must mature a hundred thousand blocks(for example). This database may also prune
certain voting addresses and unspendable addresses that also have a lot of confirmations.
The entire unspent database is hashed and then staking nodes are required to sign this
database. They will then form a consensus eventually of what they believe the database
to be. After perhaps anywhere from a few thousand to a hundred thousand confirmations
(assuming you are using one minute blocks) then the old information is either deleted
or archived and the new blockchain simply starts from the new position. Users can still
choose to archive all the old spent data however it is no longer needed to run a full node
and perhaps only useful for research and notary. For further protection each set of deleted
information should be hashed and stored with the new genesis block header so an archival
node can prove the validity of notary, transactions and other information.

44

Now that the block size is solved we need a way to handle bandwidth and processing time
for checking transactions. This is one of the biggest bottlenecks in the industry. It is clear
that we don’t want centralization however we know that every node has different processing
capacity. The solution to this is creating a system that allows nodes to share block rewards
and fees as the system scales. First, a node who thinks they are eligible to stake performs
a proof of work to determine their processing and storage capacity and this can be burned
to the chain or shared privately. Then nodes voluntarily group with other nodes publishing
this group in a transaction. There should be a limit for the number of confirmations before
a node can change their groups and a limit to the number of groups a node can join based
on their staking weight. When an input wins a stake, the hash determines what transactions
each node confirms based on it’s staking weight and self-published processing capability.
This means the balances of the staking addresses should be known in advance. Therefore
a node with a small stake in the network should not have the ability to process all of the
networks transactions. Each node that participated in sharing should sign the hash of the
transactions they validated and connect their address to that hash. Therefore, if they violate
network rules then the next group to stake in the chain is the owner of the funds in that
address which is paid as a penalty as fees. This penalty would then be the stakers total
network weight. Increasing the minimum deposit size is okay as long as it keeps the entire
network distributed and should probably not exceed .002% of the total supply. There may also
be a maximum penalty not exceeding a percentage of the total supply. Fees are distributed
based on network weight. Stakers should confirm previous blocks based on their staking
weight as well. If a node has a high staking weight but low processing capacity they would
not be asked to confirm so many transactions. New nodes connecting to the network would
only verify transactions based on their computer hardware unless they specify otherwise.
Once they get a balance they might be informed about their staking options. It might be
possible to attempt to prevent double spend and increase the probability a transaction gets
to a block by asking a prospective staking node to voluntarily sign the transaction. Therefore
if a transaction is not published then they might pay penalties. The node might have their
own requirements for transactions it can guarantee.

Sharing stake
rewards

55

Proof of stake has been shown to be more resilient to forks. The reason for this might
seem counter-intuitive because it would seem like it’s easy to “buy a network”. However in
practice, users of POS chains have a vested interest to protect the network. POW chains on
the other hand constantly get hard forked by larger mining networks when their difficulty
drops. This is because the security of POW chains is not self-contained making it too easy
for competitors to attack other chains. However, it’s clear that POW chains do contain useful
block information. It could be good to make a light version of Bitcoin to only download
block hashes and use those hashes to increase the randomness of block selection to
prevent stake grinding. Currently the “Proof of Stake 3” system has been reliable for years.
However there is a theoretical attack where a user tries to get a slight advantage in the
number of stakes he wins. If this feature is added then it should also be possible for it to
be activated and deactivated by voting from stakers just in case the blockchain in question
stops functioning.

Using POW from other chains
to prevent stake grinding

Nodes that stake can be easily taken offline by spam attacks from other nodes. This attack
is surprisingly effective and cheap to perform. To solve this, there should be some basic
defenses in most wallets which allow users to filter out payments of less than a certain
amount. They might choose to use different wallets for staking and spending. There should
also be spam detection tools (for example many small and redundant payments) with
potential penalties. There should also be tools for spending spam transactions which might
be unintentional for example when a user is donating their stake profits.

Defense against
spam attacks

66

Technical debates can prevent a large network from scaling. Therefore, it is important to
allow nodes to vote on potential forks. Although in theory they do this by choosing which
transactions to accept and reject, there is issues with “replay” attacks and traffic problems
if the decision to change protocol is taken casually. Therefore if more than 50% of the nodes
decide they want to fork for a month or more of voting, then the chain can be stopped until
the new nodes consecutively publish their confirmation that they are running the new version
to the chain for a certain number of blocks. They might also include a transaction that is
different from the previous protocol to indicate their support of the soft fork. Also nodes
might be able to vote on other protocol changes such as whether or not to include POW
info from Bitcoin, the size of deposits for staking, the size of staking groups, the amount of
confirmations before a user can change their group and so forth. Stakers that do not vote
on these proposals would be automatically rejecting them. Once a proposal is taken, the
nodes no longer vote on the issue unless manually asked to do so. It should be mentioned
here that I do not believe in Segwit or the idea that transactions should be stripped of data
to be backward compatible. In fact, lightning network and patches to malleability and other
changes are all completely possible without this change. Bitcoin was a very well developed
system and there has been some changes which have almost compromised it’s security in
recent years. However, improvements such as the lightning network are interesting scaling
concepts but these concepts are outside the scope of this paper.

Voting for
network change

77

Malleability can be useful in some edge cases but in other cases it might not be desired by
participants in a transaction. Therefore users should be able to publish a transaction with a
special tag. This tag will tell the network that when this transaction output is spent, the user
requests that all participants to the transaction sign it’s transaction ID. As some transactions
might require more than one signature, each public key included in the transaction will be
asked to sign. When spending one of these transactions, it will be required that you sign the
signed transaction ID instead of the transaction ID for the entire transaction. This means
there will be more than one way to reference a transaction.

Fixing
malleability

Networks such as BitBay use Bitmessage for communicating data for their decentralized
markets. Although Bitmessage is designed as an “everyone downloads everything” type of
system, there are ways to scale the network because most of the data can be discarded as
trivial. Because it is encrypted end to end and it is hard to locate the origin of a message
due to the redundancy of passing the same message around the network, this system is
ideal for protecting the privacy of nodes. Although staking nodes will not benefit from the
luxury, everyday users can submit transactions through this system giving them a great
deal of anonymity only second to Zero Knowledge Proof (which is the best system for
anonymity). After all, the major issue with anonymity is the ISP sees the data unencrypted
and the IP address is published. Having random users broadcast transactions is a cheap
and effective solution to the problem. The process is fairly simple. The user chooses a
Bitmessage channel they want to submit to. Then when the message arrives at the channel
the participants decrypt it and check the mempool to see if it has been published. If it has
not been published they do so.

Anonymous Broadcasting
using Bitmessage

88

Atomic trading is used mostly for decentralized exchange between different blockchains.
The technique involves a shared hash that when spent on one chain, activates a transaction
on the other chain. This technique requires transactions to be published asynchronously
as the users involved take turns and therefore relies on time locks of at least two different
lengths. One of the drawbacks of atomic trading is that there is a shared hash between
the two networks that are connected. Atomic trading therefore has the weakness of a
shared hash which can identify the user on both chains. One reason the hash can not be
hidden is because you can not reference a “p2sh” within a “p2sh”. There is a concern about
exhausting the resources of miners but it would be harmless to allow a recursion depth of
at least one level. The p2sh referenced can be restricted to basic scripting techniques such
as public keys, locktimes and hashes so there is no risk involved. Then when a transaction
is published on both chains there will be two seemingly unrelated scripts on the second
chain which actually contain two hashes instead. This allows for a script which shares the
hash on both chains and a script which does not. The party which is first to act, shares both
redeem scripts well in advance so it is known how they are spent at all times. Then they can
share the hash they did not use with the counter-party after successfully redeeming their
funds for the trade. If they refuses to send that information then the hash that is published
on their blockchain can be used while spending instead. Therefore, in the worst case
scenario the user doesn’t privately reveal their second secret simply breaking anonymity
on the trade without compromising funds. As an added bonus, this system will allow a user
to reference a p2sh address in a script. This is very useful because Bitcoin scripting allows
for users to reference a “pay to public key hash” in a script but will not allow referencing
a “pay to script hash” instead forcing users to know the entire script in advance. This is
inconvenient for multisignature wallets such as BitBay since it requires users to send their
redeem script in advance for receiving special time locked payments or it requires users to
research the chain to see if the target address has spent anything previously. A limit can be
placed on the number of scripts published while spending.

Anonymous Atomic
Cross Chain Trading

99

Example Transaction___
Alice shares two secret scripts with Bob and then
does the following...

Alice pays this address-> After 2 days funds funds
revert to Alice, before 2 days Bob can spend with
script1 (his signature and Alice’s secret hash) or with
script2 (his signature and Alice’s second secret hash)

Bob pays this address-> After 1 day funds revert to
Bob, before 1 day Alice can spend with her signature
and Alices’s secret hash

Alice then spends Bobs funds revealing the solution
to script1. She then sends Bob the hash to script2
privately even potentially encrypted into her payment.
If she doesn’t do this, Bob can still spend using the
secret hash she published. If she does send it the
transaction is relatively anonymous because the hash
is now unrelated and he doesn’t need to reveal what
script1 was.

1010

It is my belief that one of the most important innovations in blockchain is double deposit
escrow. This system first debuted in BitHalo/BlackHalo in 2014 and was later popularized
in BitBay. Using deposits from two parties paid to a joint account, it is possible to create a
two-party escrow that eliminates the incentive for deception and theft by eliminating biased
middlemen and third parties. Third parties can not discover who is honest in a dispute and
therefore this system takes away the incentive for a dispute by having both parties lose
their deposit if they cannot come to an agreement. Deposits can be flexible and based on
a reputation system. This section will expand on this system further and propose a very
amazing mixed deposit system. Because of the varying popularity of many blockchains,
a user might only wish to do business in their favorite currency. Users might also want to
create contracts which move funds from one chain to another or make promises using a
different base currency. The advantages to doing this are too much to list. Traditionally
double deposit requires both parties to hold the same base currency because the deposit
and withdraw must happen at the same time. However, by using clever transactions, both
users can mix currencies. Here is how it works.

Atomic Double Deposit
Escrow for Mixed Currencies

Bob funds this address (TX1):
Before timelock (for example 1 day)

Alice sig
Bob sig
Alice Hash
After timelock
Bob sig

Alice funds this address (TX2):
Before timelock (for example 2 days)

Alice sig
Bob sig
Alice Hash
After timelock
Alice sig

Bob first ensures that Alice signs both transactions to the 2 party escrows.
Bob then signs both transactions to the two party escrows.
Then he waits for Alice to spend his funds and publish the hash of TX1.
If she doesn’t he gets his funds back.
If she funds his escrow she publishes her hash and this allows him to fund her escrow with
the longer timelock.

1111

In this beginning phase the user who makes the larger deposit (for example Bob) should
also require Alice to sign a “bomb” transaction for both escrows before he signs the funding
transaction. A malleability patch is nice to have here but even without it, a user can delete
their escrow keys if no such transaction is signed to take away the incentive of breaking the
agreement. The bomb transaction is the disincentive for breaking any type of agreement.
Also, it might be possible to update checklocktimeverify to make it so there is a time which
if overstepped makes the entire script unspendable. Currently, checklocktimeverify is non-
exclusive.

The Escrow Phase:
Now that deposits were linked withdraws must also be linked. The withdraw process can
be relatively similar to the funding process.

The first one to sign must be Alice with a withdraw proposal for how funds are distributed for
each currency. Then if Bob agrees, Alices hash unlocks both transactions when published.

This concludes the amazingly useful “Atomic Double Deposit” system. Therefore a Bob
might deposit Bitcoin against Alices BitBay and pay in either currency upon the contracts
conclusion. Users can mix any two currencies they want. This greatly reduces the barrier
to entry in general contracting as in this case, a person would only need to hold some
sort of asset as collateral. This also might create clever ways to back altcoin currencies
using Bitcoin or other strong currencies. It might be useful for funding ICO projects while
attempting to get a guarantee on their work and not releasing funds until certain milestones
are met. It’s useful for barter, employment, cash and wires, trading, shipping and merchant
contracts. The possibilities are almost endless. Our society relies on trust and unbreakable
contracts such as these are a gateway to our freedom by creating a system that favors
honest parties.

Atomic Double Deposit
Escrow for Mixed Currencies

Alice Escrow:
Alice Sig
Bob Sig
Alice Hash

Bob Escrow:
Alice Sig
Bob Sig
Alice Hash

1212

If the blockchain in question is successful, there are some other recommendations in this
paper for the future of blockchain technology. Smart contracting systems like Ethereum
allow too many things at once. This creates a scaling and bloat problem far beyond what
Bitcoin experienced. To solve this while at the same time offer a competitive product
it is recommended to scale with demand. Therefore, it should be possible to let nodes
execute code in any language as long as the code being executed matches a hash. This
way, special contracts can be audited in advance for security and then various sandboxes
can be made which can be used in sidechains or on the main chain. One of the strengths
and weaknesses of Ethereum was allowing the building of “blockchains on top of the
blockchain”. This is an issue as it prevents Ethereum from scaling and also harms the
economy due to fraudulent proposals and naive investing. On the other hand, it makes
issuing a token easy and therefore increases the demand for the main chain. It is my belief
that you should limit the way in which chains are built on top of chains by either requiring
them to be part of a sidechain or to tie up some funds on the main chain to increase
it’s value. Additionally, notarized objects such as dividend paying stocks and real estate
can drive trillions of dollars of demand and real value to blockchains. There has been a
somewhat baseless criticism of blockchain technology that it’s value is purely speculative.
However this is not true because blockchains can replace the stock market. They can also
be a secure way of transferring houses and notarized objects. If for example, a user can
guarantee a percentage of his home equity as backing for a blockchain and let users work
with this liquidity for a fee, it empowers them in tremendous ways by giving them direct
and easy access to a way to profit without any middle men. This in theory is a trillion
dollar industry. It also lets demand be driven to even the smaller blockchains as long as a
company is willing to issue stocks on it or as long as real estate is allowed to be notarized
on the chain in question. Lastly, there is sidechains. Sidechains such as those used in Lisk,
are a great way of taking pressure and liabilities off of the main chain. Even if the sidechain
is more centralized, the users can understand these risks and proceed accordingly. Some
of my ideas will be proposed in the next section.

Further areas
of research

1313

Most popular blockchains are either account driven or output driven. Account driven
systems update accounts with a nonce every time a transaction is spent from them. Output
driven systems work similar to cash and have their own scripting system for contracts.
There are advantages and disadvantages to both systems. One proposal I’ve had for years
is to simply engineer a contracting system where changes and updates happen gradually
as nodes accept them. Contracts should probably not be introduced through voting (even
if many trusted Githubs are queried) but instead introduced in bulk during a scheduled
fork. The systems design is to allow for smart contracts based on the pre-approved hash
of some computer code in any language potentially Javascript or C++ for example. These
hashed files are saved separately and then run with their own fee policy implemented inside
of them. Their code should be modest for example, a simple dividend paying contract or
a type of promise based on a notarized object. The user who wishes to use one of these
contracts would have one of the outputs tied to an input or a series of inputs and then
reference the hash of the contract. The next output would then be the data payload to the
contract if applicable. This system is simple, not restrictive and doesn’t burden the main
chain with engineering issues. It may be possible to vote contracts out of existence if a
flaw is found. I’m of the opinion that the most important contracts will be business style
contracts such as stocks and dividends, real estate, notary, creative accounting, contracts
for backing/stability, and even games. A contract might be allowed to run code in a shared
thread in some cases to check on certain information in the background while reducing
workload to the nodes that verify it.

Smart Contracts
in a hashed output

1414

The issue of blockchains on top of the blockchain is one to be addressed. In this case, I
propose that real estate notary and assets (such as stocks) be encouraged on the main
chain and contracts should be created to trade it’s value in a meaningful way. It should
be pointed out that this major industry might require country-wide recognition in their
respective notaries and regulatory industries to become truly valid. It is possible to code
any type of notary transfer system on top of Bitcoin without changing a single thing about
Bitcoin. This is because something in the real world that is notarized on a blockchain
needs to be recognized as valid in the real world. Nonetheless, there should be contracts to
support such an infrastructure since it will be accepted in one way or another. These types
of contracts can include issuance, backing, trading, bonds, collateral, options and dividends.
The first step required to acknowledge digital signatures and hashes in the real world would
require a person registering their identity with their local notary such as public key and/or
documentation identity hash (people wish to be anonymous but this would be the exception
when they want solid title). Then they would also be able to register the documentation
or signatures of a corporation, real estate, commodities and so forth. Lastly, there are
countries that require strict regulation for stocks and some with no regulation at all. The
users of the chain will probably issue assets at their own risk as their options expand with
time. When issuing a new asset such as a stock or a coin associated with a contract, there
should be one of two requirements. The first option is the user must connect X number of
coins to each asset (so the asset traded is both the parent and child currency). So as an
example, a company may claim 1 BitBay is 100 shares of their company and if a user holds a
minimum number of shares, they receive dividends payable to the same public key in BitBay
or potentially even Bitcoin (the public key can be the same across multiple networks). All
subsequent transactions would ensure this tag is carried to the next recipient. It is not a good
idea to allow multiple tags in the first implementation of this system. This prevents bloating
the chain but allows easy asset issuance and it restricts supply of the parent currency and
drives extra value to it. However in blockchains such as BitBay with a variable supply, this
might not always be an option as in some cases an asset might not want to be subdivided
or frozen and unfrozen dynamically. Therefore, a company might choose to issue an asset
as a contract and this contract might issue it’s own coins or assets. To create this asset it
would be required to post a deposit to the blockchain which can only be released if the asset
is dissolved. Stakers can vote to change the minimum deposit required dynamically to make
room for new companies. I believe this simple system to be the best of both worlds as the
system can scale with demand while protecting the parent blockchain.

Notary Contracts
and asset issuance

1515

For more advanced token issuance and platforms that require a lot of coding the only way
forward is sidechains. Sidechains protect the main chain by preventing all the traffic from
being on the main chain. They may be pseudo-centralized or decentralized. However the
point is, failures on a side chain will never effect the security of the parent chain. The basic
concept is to allow users to make a payment to a side chain thus removing coins from
the main chain after a certain number of confirmations. Then the sidechain can inject the
coins back into the main chain once a certain number of confirmations happen on the
sidechain. The parent chain only needs to monitor this event. Stakers should be able to
vote a sidechain into or out of existence and limit the number of possible chains issued
and even require a deposit to issue a sidechain. This type of system is useful for many
applications such as social media, businesses, zero knowledge proof, websites, games and
other implementations. A good example of a working system for sidechains is Lisk. There
are also various whitepapers discussing the best security practices.

Sidechains

1616

Conclusion___
This paper summarizes a variety of ideas ranging from scaling to smart contracts. Some

things require more work to code than others so updates would come as multiple forks as each

improvement is tested and proven. Current systems such as Ethereum, EOS and even Bitcoin have

centralization, usability and scaling concerns. Improvements to blockchains should be gradual and

practical. Contracts should be introduced at a steady pace with modest goals for the demand that

businesses are requiring. Notary, proof of identity, securities and real estate should be prioritized

due to the tremendous value it drives to the entire industry. Sidechains should be used to avoid

putting pressure on the main chain and dividend paying securities and tokens should transfer with

the parent coin in order to drive more demand and value being mutually beneficial to both the parent

and child. The methods for scaling should be based on pruning, archiving, sharing the workload of

confirming blocks, adding disincentives for double spend and bad blocks, benchmarking, syncing

with a percentage of the network of your choice as the system scales, scaling dynamically, scaling

blocks with demand, and patching current security holes such as spam, malleability, stake grinding

and randomness. Voting can be used to scale blockchains, add changes as they are audited by

enough coders, and protect the network from subversion and security threats by being able to

remove contracts or side chains if needed. Decentralized exchange should be the norm and not the

exception with atomic trading and especially anonymous atomic trading used for free trade without

risk of losing funds. Double deposit escrow can be used to enforce real world agreements between

multiple currencies at once regardless of the type of agreement. All of these things are important for

the future of cryptocurrency and it is my hope that the ideas here inspire other developers to carry

the torch from this moment forward.

1717

